
Physically Feasible Vehicle Trajectory Prediction

Harshayu Girase†§∗ Jerrick Hoang†∗ Sai Yalamanchi† Micol Marchetti-Bowick†

† Uber ATG § UC Berkeley

Abstract

Predicting the future motion of actors in a traffic scene is a crucial part of any
autonomous driving system. Recent research in this area has focused on trajectory
prediction approaches that optimize standard trajectory error metrics. In this
work, we describe three important properties – physical realism guarantees, system
maintainability, and sample efficiency – which we believe are equally important for
developing a self-driving system that can operate safely and practically in the real
world. Furthermore, we introduce PTNet (PathTrackingNet), a novel approach
for vehicle trajectory prediction that is a hybrid of the classical pure pursuit path
tracking algorithm and modern graph-based neural networks. By combining a
structured robotics technique with a flexible learning approach, we are able to
produce a system that not only achieves the same level of performance as other
state-of-the-art methods on traditional trajectory error metrics, but also provides
strong guarantees about the physical realism of the predicted trajectories while
requiring half the amount of data. We believe focusing on this new class of hybrid
approaches is an useful direction for developing and maintaining a safety-critical
autonomous driving system.

1 Introduction

Over the past several years, significant advancements have been made in autonomous driving. One
active area of research is in methods for predicting the future motion of surrounding actors in the
scene. In this work, we focus on the prediction problem, and in particular, we want to direct the
attention of the research community to a less explored approach: combining robotics with machine
learning. We argue that this hybrid approach is useful in order to maintain a safety critical system
over a long period of time. In particular, we focus on the following three aspects.

Physical realism guarantees: Despite being a very powerful toolkit, pure machine learning methods
provide few theoretical guarantees with regard to the physical dynamics of the predicted trajectories.
On the other hand, robotic techniques for understanding rigid body movement have been extensively
studied and theoretically understood [1, 2]. In this paper, we propose a hybrid technique, leveraging
the power of learning from data along with the advantage of strong theoretical guarantees that robotic
techniques provide. We also emphasize the importance of evaluating prediction quality based on
trajectory feasibility metrics in addition to trajectory error metrics. Figure 1 shows two hypothetical
situations where trajectory error metrics do not paint a full picture. We show quantitatively and
qualitatively that our model outperforms state-of-the-art models on key feasibility metrics.

System maintainability: Maintainability is the degree to which an application is understood, or the
ease with which an application can be maintained, enhanced, and improved over time. Using the
framework of technical debt, the authors of [3] argue that despite the quick wins machine learning
methods bring to a system, it is remarkably easy to incur a massive maintenance cost over the long

∗ indicates equal contribution

Machine Learning for Autonomous Driving Workshop at the 34th Conference on Neural Information Processing
Systems (NeurIPS 2020), Vancouver, Canada.



(a) A hypothetical scenario where the predicted
trajectory has zero displacement error. However,
the predicted orientation makes the trajectory dy-
namically infeasible for a vehicle to follow.

(b) A hypothetical scenario where prediction 1 (red) has
smaller trajectory error than prediction 2 (yellow) in
comparison to ground truth (green). However, the red
predicted trajectory is physically unrealistic.

Figure 1: Two scenarios scenarios demonstrating that trajectory error metrics do not fully capture the important
characteristics of the predicted trajectories.

run. Specifically, the authors emphasize boundary erosion, arguing that machine learning models
create entanglement which make isolated improvements impossible. Combining robotic techniques
with machine learning naturally introduces stronger abstraction boundaries, creating an encapsulated
and modular design that leads to more maintainable code in the long run [4].

Sample efficiency: It is expensive to collect a large amount of real-world driving data, particularly
if the autonomous driving system also depends on having a high-definition map. Machine learning
methods require a large amount of data in order to learn high-dimensional correlations from scratch.
Robotic techniques, on the other hand, already incorporate distilled knowledge about the world in
the form of physics equations. A hybrid approach increases sample efficiency while still learning
from data. We show that our model is twice as sample efficient and still outperforms or matches
state-of-the-art performance in trajectory error by explicitly modeling and executing motion profiles.

Overall, in order to develop and maintain a safety critical autonomous driving system, we believe that
it is useful to explore more structured machine learning approaches by combining them with existing
and well-studied robotics techniques. In this work, we combine graph neural networks with the Pure
Pursuit path tracking algorithm [5], leveraging the power of data to learn a motion profile predictor
for each actor and executing the motion profile with a Pure Pursuit model. We show quantitatively
and qualitatively that our method achieves the same level of performance as state-of-the-art methods,
while also providing strong physical realism guarantees and improving on sample efficiency.

2 Related Work

With the recent success of deep learning in many domains, recent work has focused on deep neural
network based approaches for trajectory prediction. Specifically, the recurrent neural network (RNN)
has shown promising performance for sequence learning and many works have employed long
short-term memory (LSTM) and gated recurrent unit (GRU) networks for future motion forecasting
given past sequential observations [6, 7, 8, 9, 10]. In order to capture surrounding information,
recent papers have proposed to use contextual scene information for scene-compliant prediction
[11, 12, 13, 14]. Most of these methods encode scene context features using convolutional neural
networks (CNN) and then use learnt embeddings downstream to predict actor trajectories. Another
family of deep-learning-based approaches has explored graph neural networks to model interactions
between agents [15, 16, 17, 18, 19, 20]. These deep networks learn vehicle dynamics, such as feasible
steering and acceleration, from the large number of example trajectories available during training.
However, unconstrained motion prediction may violate the dynamic feasibility constraints of vehicles.
Most of these methods only predict the center positions of a vehicle or independently predict [21, 22]
position and heading which may still result in infeasible discrepancies between the two, and as a
result may poorly capture the vehicle’s occupancy in space.

Other approaches also introduce structure into the task by exploring goal-conditioned ideas which
model actor intent and goals prior to predicting the trajectory. Rhinehart et al. [23] propose PRE-
COG, a goal-conditioned approach for multi-agent prediction. More recently, Mangalam et al. [24]
propose an endpoint conditioned prediction scheme which conditions pedestrian predictions on goal
destinations. In the vehicle setting, GoalNet [25] uses lane centerlines as goal paths and predicts
trajectories in the path-relative Frenet frame. The authors of MultiPath [26] similarly introduce

2



the idea of trajectory anchors to provide more structure for the problem. While in practice these
structured approaches could provide more system maintainability and sample efficiency, they still
do not provide an absolute guarantee on the dynamic feasibility of the predicted trajectories since
the predicted offsets could be arbitrary. Our method leverages the goal-based trajectory prediction
approach introduced in [25], which allows long-term behavior to be captured. However, we also
incorporate a path tracking algorithm that provides strong guarantee on the physical realism of the
resulting trajectories.

There have been a few prior approaches that combine robotics techniques with machine learning.
These methods have focused primarily on state estimation or short-term instantaneous trajectory
prediction [27, 28] through kinematic-based vehicle models such as a Kalman Filter. While these
models work well for short-term prediction, they become increasingly unreliable for longer-term
prediction as the vehicle will change control inputs based on scene elements or other vehicles. The
majority of robotics-focused research that has been applied to the autonomous driving domain has
been on the motion planning side, e.g. [29, 30, 31]. In contrast, our approach combines learning and
robotics for the prediction task. CoverNet [32] is a recent approach that ensures physical realism by
turning the trajectory prediction problem into a classification task over a set of dynamically feasible
trajectories. However, in order to achieve good coverage over the space of possible future motion, a
large number of trajectories must be generated, which might be impractical for a system that must
run in real time. The deep kinematic model (DKM) introduced by Cui et al. [22] is closest to our
philosophy, as they predict control inputs such as acceleration and steering prior to trajectory roll-out.
While they ensure dynamic feasibility of their trajectories, their proposed method does not explicitly
use goal path information to guide predictions that may be useful for longer-horizon predictions. Our
work relies on Pure Pursuit path tracking [5] to produce goal-directed trajectories that yield better
long-term predictions while still providing strong guarantees on curvature and higher-order dynamics.

3 Method

In this section, we present our method for combining a flexible data-driven model with a structured
path tracking algorithm to produce dynamically feasible trajectory predictions for vehicles. Our
approach is built on top of GoalNet, a goal-based trajectory prediction model introduced in [25]. The
key difference between our model and GoalNet is that we replace the final trajectory prediction layer
with a highly structured Pure Pursuit path tracking (PT) layer. We therefore call our model PTNet.

In this work, we focus solely on the trajectory prediction problem. We assume that there is a real-time
detection and tracking system onboard the SDV to detect and estimate the states of surrounding
traffic actors. For each actor, our model is given the actor’s dynamics state (current heading, position,
velocity, and acceleration) and its past positions. Furthermore, mapped lane boundaries and traffic
sign locations are also available as inputs. Given this information, our model then makes multi-modal
spatio-temporal predictions of the actor’s positions over the next T timesteps.

3.1 Background

Our method is built on the path generation and graph encoder layers introduced in GoalNet [25]
combined with the Pure Pursuit algorithm [5]. In the remainder of this section, we provide some
background on each of these building blocks.

3.1.1 Path Generation

The path generation module generates a set of map-based goal paths and one additional map-free
path for each actor. To generate map-based paths, we treat the map as a lane graph, where each node
is a lane (with no branching points) and a directed edge connecting two nodes if the source node is
the predecessor lane of the target node. Given the lane graph and the actor’s current position, we
query for the closest nodes (we use a radius r = 2m) and roll out the paths by traversing the graph
and connecting the centerlines of the lanes. The result is a list of lane sequences we call map-based
paths. Since the map might not capture the high-level intention of the actor, we also generate one
additional map-free path in the direction of travel of the actor. For each actor Ai, we then transform
each goal path Gij into the actor’s frame of reference. These will later be used as reference paths for
our path tracking algorithm.

3



Figure 2: An overview of our method. Given a high-definition map and a perception system that outputs tracked
objects, our method consists of three main steps. (1) Path generation: for each object, we generate a set of goal
paths. (2) Input encoding: for each actor, we construct a graph that consists of one single actor node and a
variable set of goal nodes, and then encode the actor state and the goal information into latent features using
a GNN. (3) Trajectory development: for each goal, we predict N temporal motion profiles and execute each
motion profile using the PurePursuit path tracking algorithm to produce a trajectory.

3.1.2 Graph Networks Encoder
To handle a variable number of goals for each actor, we use a graph network [33] following the
method introduced in GoalNet [25]. In particular, we construct a mini graph for each actor. The
graph consists of a variable number of goal nodes and a single actor node. The actor’s current and
past states are encoded into the initial actor node features. The path and context information along
each path, e.g. signage locations and curvature, is encoded into initial goal node features. For the
initial set of features for each edge corresponding to a goal, we use the actor’s current velocity and
acceleration to construct a 0-jerk rollout and project it to onto the path. We then follow the equation
proposed in [25] for our graph network updates.

Specifically, for each actor i, denote v`i to be the encoded actor node attributes at layer `. Let the set
of all goals for each i be Gi. For each goal j ∈ Gi of actor i, denote e`ij to be the edge attributes at
layer ` and let gj be the goal node attributes for the goal j. Note that gj does not have a layer index
since the goal nodes do not have incoming edges so they are not updated at each iteration. The update
equations are given by,

e`+1
ij = φe(v

`
i , e

`
ij , gj) (1)

v`+1
i = φv(v

`
i , ψ({e`ij}j∈Gi

)) (2)

We use a 2-layer MLP for φv and φa and the mean function for ψ. This simple graph network
contains a total of 2 layers.

3.1.3 Pure Pursuit Algorithm
Pure Pursuit [5] is a simple path tracking algorithm that calculates the necessary arc to reach a "goal
point" on the path. The algorithm is aptly named based on the way humans drive – we look at a point
we want to go to and control the car to reach that point. The high level steps of the Pure Pursuit
algorithm are outlined in Figure 7 and are described in detail below.

Finding the target point on the path: Given the actor’s position and a goal path, the algorithm first
tries to find a target point on the path to track. In particular, given a fixed lookahead distance L,
we find all possible intersections of the circle of radius L centering at the actor’s control point with
the goal path. Our paths are generated so that they are sufficiently close to the actor such that an
initial intersection point always exists. In the case where there is more than one intersection, we only
consider the point ahead of the actor on the path. In all of our experiments, we use L = 10m.

Assume circular motion and calculate curvature: Assuming circular motion, we find the circle
passing through the goal point and tangent to the control point in the direction of heading. Given

4



Figure 3: An overview of the Pure Pursuit path tracking update.

the geometric setup, it can be proved (see [5]) that the curvature can be obtained by κ = 2|xg|/L2

where xg is the x-component of the goal point in the actor’s frame. However, this curvature can
be infeasible. To ensure that we only execute feasible motion, we calculate the final curvature by
κ = min(2|xg|/L2,Mc) where Mc is the maximum possible curvature that can be executed by a
vehicle. In our experiments, we choose Mc = 0.3.

Update path tracking state: Assume the state is comprised of position pit = (xit, y
i
t) ∈ R2, velocity

vit ∈ R2, and heading hit ∈ [−π, π). We use the following state update equations. The input
acceleration at each time step is predicted by the acceleration profile predictor described in the
previous section. 

xit+1 = xit + cos(hit)v
i
t∆t

yit+1 = yit + sin(hit)v
i
t∆t

vit+1 = vit + ait∆t

κ= min(2xg/L
2;Mκ)

hit+1 = hit + vit∆tκ

3.2 PTNet

Our main contribution is connecting the idea of map-adaptive reference path generation and scoring
introduced by [25] with a structured path following algorithm introduced by [5]. The outline of
our method is described in Figure 2. The first two components, path generation and graph network
encoding, are taken from GoalNet. The last component is a differentiable Pure Pursuit layer. We
connect these two components using a temporal profile predictor. This layer also serves as a
semantically meaningful abstraction between the two components. Specifically, the output of this
layer is a sequence of acceleration values over time which can be visualized and has a specific
physical meaning, unlike most intermediate layers in a fully learned system. We implemented all
operations such that the system remains end-to-end trainable. The predicted acceleration profile as
well as curvature update in PurePursuit provides theoretical guarantees on physical realism. Also,
by directly leveraging a motion model, we provide a starting point from which the model can learn,
making it more sample efficient.

3.2.1 Multi-Modal Acceleration Profile Generation
For each of our spatial modes (anchored by reference paths), we generateN different temporal modes.
Temporal modes can simply be modeled by generating multiple different acceleration profiles to
be inputted into our path tracking algorithm. We follow the same unsupervised training scheme
proposed in [11] to learn different acceleration profile modes. In particular, we have N acceleration
prediction networks, each learning a different motion profile, and a mode prediction network to learn
the probabilities for predicting each mode. On each iteration, only the mode whose output is closest
to the ground truth is penalized in the loss. To ensure physical realism, we constrain the output of
each network to be within -8 m/s2 and 8 m/s2 by using a scaled tanh activation. The acceleration
prediction layer serves as a strong abstraction between input encoding and path tracking layer, which

5



enforces system maintainability. By predicting in control space as an intermediate step instead of
predicting position directly, the model also provides a semantically meaningful intermediate layer
which improves interpretability.

3.2.2 Loss Function
The loss function used to train this model is a combination of the mode classification loss and
trajectory regression loss. For each actor i, we identify the set of goals G∗i that match the future
ground truth trajectory of the actor (we use the same path labeling algorithm defined in [25]). For each
actor i, we define the target probability of 1/|G∗i| for each goal. For each matching goal, we assign
target probability of 1 for the best matching temporal mode. The target probability of a trajectory
mode is the product of the target probability of the spatial (goal) mode and the target probability
of the temporal mode (one-hot). For each actor we also calculate the L1 smooth loss between the
ground-truth trajectory and the trajectory modes weighted by probability,

L =
∑
i∈A

[(−
∑
m∈T i

pm log p̂m)︸ ︷︷ ︸
Mode Classification Loss

+ (
∑
m∈T i

pm||τi − τ̂m||1)︸ ︷︷ ︸
Trajectory Error Loss

]

Here we denote the set of all actors to be A and the set of all spatio-temporal trajectory modes for an
actor i to be T i. We define the target probability mass for mode m to be pm and the predicted mass
to be p̂m. We denote the predicted trajectory for temporal mode m to be τ̂m and the ground truth
trajectory of actor i to be τi.

4 Experiments

4.1 Datasets

We evaluate our method on two datasets: our internal dataset and the public NuScenes dataset [34].
The NuScenes dataset has 1.4M objects over 40K frames collected from 15 hours of driving in Boston
and Singapore. Our internal dataset has 138M objects (60% of which are vehicles) over 6M frames
and was collected from various cities in the United States. We only consider non-parked vehicles and
those for which we observe at least 6 seconds of future.

4.2 Baselines

We compare our model with 4 different baselines: GoalNet [25], Multiple Trajectory Prediction
(MTP) [11], MultiPath [26] and CoverNet [32]. For CoverNet, we use the static version of CoverNet
which relies on having a predefined set of trajectories. We directly use the publicly released set
of 2206 trajectories for the NuScenes dataset. We did not compare to CoverNet on our internal
dataset. MTP predicts a fixed number of different modes and encourages diversity by only updating
the winning mode. In our experiments, we use 3 modes for MTP. MultiPath uses a fixed-size set of
spatial-temporary trajectory anchors which are estimated by running a clustering algorithm on the
training dataset. The method then makes trajectory predictions by outputting offsets from the best
anchor. We use 64 modes for our MultiPath comparison.

4.3 Feasibility Metrics

In addition to evaluating our method and baselines on standard trajectory error metrics, we also
evaluate them on other metrics that capture physical realism. To define the metrics, we first separate
the concept of heading into bounding box heading and motion heading. An actor’s bounding box
heading is the direction the actor is facing. In contrast, motion heading is defined to be the direction
between two consecutive control points. For our model, these concepts are the same. However, we
want to define a set of metrics that can be broadly applicable. Next, we define four key directions
that will be used to compute the feasibility metrics. The longitudinal direction is defined to be the
direction of the bounding box heading. The lateral direction is defined to be the direction orthogonal
to the longitudinal direction. The traversal direction is defined to be the direction of the motion
heading. The centripetal direction is defined to be the direction orthogonal to the traversal direction.
Using these concepts, we define a set of physical feasibility metrics below.

6



Method avg ATE avg CTE avg DE

PTNet-1T 1.82 0.51 2.04
GoalNet-1T 1.84 0.48 2.05
MTP 2.44 0.77 2.77
MultiPath 3.62 0.90 4.01
CoverNet 4.07 1.14 4.57

(a) Comparison of the most probable trajectory error on
the NuScenes dataset.

Method avg ATE avg CTE avg DE

PTNet-1T 2.15 0.49 2.38
GoalNet-1T 2.16 0.47 2.37
MTP 2.39 0.59 2.67
MultiPath 2.59 0.66 2.91
CoverNet — — —

(b) Comparison of the most probable trajectory error on
our internal dataset. CoverNet results are not available
since CoverNet requires a trajectory anchor set that is
specific to the dataset.

Table 1: Trajectory error metrics comparison on the public NuScenes dataset and our internal dataset.

Figure 4: Trajectory error vs horizon comparison between PTNet-1T and GoalNet-1T. PTNet outperforms
GoalNet-1T in along-track error due to its ability to explicitly model the acceleration profile for each goal.

Curvature Violation: The curvature over a trajectory segment is given by κ = 2 sin ∆hi
/∆pi, where

∆hi denotes the change in bounding box heading and ∆pi denotes the change in position between
two waypoints. A trajectory contains a curvature violation if κ > 0.3 m−1 at any point along the
trajectory.

Lateral Speed Violation: If we decompose the speed vector vit into its lateral and longitudinal
components, a trajectory contains a lateral speed violation if at any given point t, the instantaneous
lateral speed is greater than 1 m/s.

Centripetal Acceleration Violation: If we decompose the acceleration vector ait into its traversal
and centripetal components, a trajectory contains a centripetal acceleration violation if at any given
point t, the instantaneous centripetal acceleration is greater than 10 m/s2.

Traversal Acceleration Violation: If we decompose the acceleration vector ait in to its traversal and
centripetal components, a trajectory contains a traversal acceleration violation if at any given point t,
the instantaneous centripetal acceleration is smaller than −12 m/s2 or greater than 8 m/s2.

All of the above boundary constraints are chosen from studying the physical constraints (acceleration,
turning radius) of a standard mid-size SUV. We also made sure that none of the ground truth
trajectories in our datasets violate any of these constraints.

4.4 Results

We first compare our method with all baselines on a set of general trajectory error metrics. For PTNet
and GoalNet, we use the suffix "-NT" to refer to a model with N temporal modes. In particular, we
report the cross-track (CTE), along-track (ATE) and displacement error (DE) on the most probable
trajectory in both our internal dataset and NuScenes dataset. The results are shown in Table 1. In
this table, the errors are averaged over all horizons. The precise definitions of these metrics can be
found in the Appendix. We observe that PTNet performs on par with GoalNet on these trajectory
error metrics while beating all other baselines across all metrics.

Next, we dive deeper into comparing PTNet-1T and GoalNet-1T. Specifically, we report the along-
track and cross-track errors of the predicted trajectory mode that best matches the ground truth against
the prediction horizon. The results are shown in Figure 4. We observe that on best matching error
metrics, PTNet-1T outperforms GoalNet-1T on along-track error across all horizons. This could be

7



Method Curvature Lateral Speed Centripetal Accel Min Traversal Accel Max Traversal Accel
Violations Violations (%) Violations (%) Violations (%) Violations (%)

GoalNet-1T 65.16 0.43 16.64 0.06 0.76
GoalNet-2T 68.80 4.41 22.34 1.90 3.23
GoalNet-3T 69.02 6.71 25.86 3.60 5.64
PTNet-1T 0 0.27 9.49 0 0
PTNet-2T 0 0.27 9.21 0 0
PTNet-3T 0 0.27 7.90 0 0
GroundTruth 0 0 0 0 0

Table 2: Trajectory feasibility metrics comparison on the public NuScenes dataset.

Figure 5: Qualitative results comparing GoalNet-1T and PTNet-1T. We can see that PTNet’s output is always
smooth, while GoalNet’s can be noisy and physically infeasible.

attributed to PTNet’s explicit representation of the acceleration profile, which makes the task easier to
learn. On cross-track error, PTNet outperforms GoalNet in later horizons (> 3.5 seconds) but is worse
in shorter horizons (< 3.5 seconds). In general, the short-term behavior of an actor is much easier to
model with fewer constraints, while long-term behavior is easier to model with more structure. This
is why we posit incorporating the structure from a robotics-based approach helps PTNet outperform
GoalNet in the longer horizons.

Next, we compare our method to GoalNet on the feasibility metrics described in Section 4.3. We
omit a comparison with other baselines on these metrics because GoalNet is the strongest baseline
in terms of trajectory error and it provides the most direct comparison for evaluating the impact of
our structured “robotics” layer on the dynamic feasibility of the resulting trajectories. We report
feasibility results on the NuScenes dataset. In this experiment, we trained GoalNet and PTNet
using three different choices of temporal modes, denoted by 1T,2T,3T. For each model and for each
metric, we report the fraction of total trajectories violating the metric. We count one trajectory as
one violation regardless of the number of waypoints violating the requirement. The result is shown
in Table 2. We observe that all variants of PTNet perform significantly better than all variants of
GoalNet across all metrics. Specifically, because of the way PTNet is set up, curvature and traversal
acceleration requirements are guaranteed to be satisfied. We confirm quantitatively that PTNet shows
0% violations in these categories. We also observe that as we increase the number of temporal
modes, i.e. increasing the number of trajectories produced per goal, GoalNet tends to produce more
trajectories violating physical realism while the PTNet numbers stay relatively constant or decrease
slightly. We also show qualitative plots in Figure 5. Qualitatively, we observe that PTNet’s trajectory
outputs, although sometimes further away from the ground truth in terms of L2 distance, are always
smooth. In contrast, GoalNet is slightly more accurate in terms of average trajectory error metrics,
but its trajectories can be noisy and non-smooth.

Lastly, we experiment on sample efficiency with GoalNet-1T and PTNet-1T. We set up the experiment
by evaluating each model when trained on X% of the training set and evaluating on the entire test

8



Figure 6: A comparison of the sample efficiency of PTNet-1T and GoalNet-1T. We plot the best-matching
average displacement error against percentage of training data. We observe that PTNet can be up to 2 times
more sample efficient to reach the same level of performance.

set. For each value of X, we use four different random seeds to randomly select X% of the training
logs. We train both models on this exact set of sampled logs and evaluate on the test set. In this
experiment, we report the performance of GoalNet-1T and PTNet-1T using the best matching average
displacement error. Results are shown in Figure 6. We can see that because PTNet can leverage
the distilled knowledge about the world through the dynamics equation update, the model requires
2X less data in order to converge to the same level of performance as GoalNet. On the other hand,
GoalNet needs to learn physics from scratch, which requires a lot more data.

Overall, we observe that the addition of a robotics layer helps PTNet produce smooth and dynamically
feasible trajectories while maintaining state of the art level performance on trajectory error metrics
and requiring 2X less data.

5 Conclusion

In this work, we introduce PTNet which combines a machine-learning-based trajectory prediction
model with a structured path-tracking algorithm. Specifically, we introduce a differentiable path-
tracking (PT) layer that can be added to existing architectures while still allowing end-to-end
training. PTNet models and executes one or more acceleration profiles per path using a differentiable
Pure Pursuit path tracker. The final output is a set of multi-modal spatial-temporal trajectories.
By leveraging the power of learning from data as well as the structure embedded in classical
physics-based robotics methods, PTNet is able to significantly improve on physical realism of the
predicted trajectories while maintaining state-of-the-art performance on key trajectory error metrics
and requiring two times less data. We view this as a small step towards a bigger idea, which is the
fusion of ML and Robotics techniques for vehicle trajectory prediction.

9



References
[1] Q. Yao, Y. Tian, Q. Wang, and S. Wang. Control strategies on path tracking for autonomous vehicle: State

of the art and future challenges. IEEE Access, 8:161211–161222, 2020.

[2] Eduardo D Sontag. Mathematical control theory: deterministic finite dimensional systems, volume 6.
Springer Science & Business Media, 2013.

[3] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary,
and Michael Young. Machine learning: The high interest credit card of technical debt. In SE4ML: Software
Engineering for Machine Learning (NIPS 2014 Workshop), 2014.

[4] Martin Fowler. Refactoring: improving the design of existing code. Addison-Wesley Professional, 2018.

[5] R Craig Coulter. Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-
Mellon UNIV Pittsburgh PA Robotics INST, 1992.

[6] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In
Advances in neural information processing systems, pages 3104–3112, 2014.

[7] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B Choy, Philip HS Torr, and Manmohan Chan-
draker. Desire: Distant future prediction in dynamic scenes with interacting agents. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 336–345, 2017.

[8] ByeoungDo Kim, Chang Mook Kang, Jaekyum Kim, Seung Hi Lee, Chung Choo Chung, and Jun Won
Choi. Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network. In
2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pages 399–404.
IEEE, 2017.

[9] Yuexin Ma, Xinge Zhu, Sibo Zhang, Ruigang Yang, Wenping Wang, and Dinesh Manocha. Trafficpredict:
Trajectory prediction for heterogeneous traffic-agents. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 6120–6127, 2019.

[10] Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, and Andrea Tacchetti.
Visual interaction networks: Learning a physics simulator from video. In Advances in neural information
processing systems, pages 4539–4547, 2017.

[11] Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou, Tsung-Han Lin, Thi Nguyen, Tzu-Kuo Huang,
Jeff Schneider, and Nemanja Djuric. Multimodal trajectory predictions for autonomous driving using deep
convolutional networks. In 2019 International Conference on Robotics and Automation (ICRA), pages
2090–2096. IEEE, 2019.

[12] Nemanja Djuric, Vladan Radosavljevic, Henggang Cui, Thi Nguyen, Fang-Chieh Chou, Tsung-Han
Lin, Nitin Singh, and Jeff Schneider. Uncertainty-aware short-term motion prediction of traffic actors
for autonomous driving. In The IEEE Winter Conference on Applications of Computer Vision, pages
2095–2104, 2020.

[13] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauffeurnet: Learning to drive by imitating the
best and synthesizing the worst. arXiv preprint arXiv:1812.03079, 2018.

[14] Hang Zhao, Jiyang Gao, Tian Lan, Chen Sun, Benjamin Sapp, Balakrishnan Varadarajan, Yue Shen,
Yi Shen, Yuning Chai, Cordelia Schmid, et al. Tnt: Target-driven trajectory prediction. arXiv preprint
arXiv:2008.08294, 2020.

[15] Yingfan Huang, Huikun Bi, Zhaoxin Li, Tianlu Mao, and Zhaoqi Wang. Stgat: Modeling spatial-temporal
interactions for human trajectory prediction. In Proceedings of the IEEE International Conference on
Computer Vision, pages 6272–6281, 2019.

[16] Sergio Casas, Cole Gulino, Renjie Liao, and Raquel Urtasun. Spatially-aware graph neural networks for
relational behavior forecasting from sensor data. arXiv preprint arXiv:1910.08233, 2019.

[17] Lidan Zhang, Qi She, and Ping Guo. Stochastic trajectory prediction with social graph network. arXiv
preprint arXiv:1907.10233, 2019.

[18] Donsuk Lee, Yiming Gu, Jerrick Hoang, and Micol Marchetti-Bowick. Joint interaction and trajectory
prediction for autonomous driving using graph neural networks. arXiv preprint arXiv:1912.07882, 2019.

[19] Abduallah Mohamed, Kun Qian, Mohamed Elhoseiny, and Christian Claudel. Social-stgcnn: A social
spatio-temporal graph convolutional neural network for human trajectory prediction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14424–14432, 2020.

10



[20] Sumit Kumar, Yiming Gu, Jerrick Hoang, Galen Clark Haynes, and Micol Marchetti-Bowick. Interaction-
based trajectory prediction over a hybrid traffic graph. arXiv preprint arXiv:2009.12916, 2020.

[21] Sergio Casas, Wenjie Luo, and Raquel Urtasun. Intentnet: Learning to predict intention from raw sensor
data. In Conference on Robot Learning, pages 947–956, 2018.

[22] Henggang Cui, Thi Nguyen, Fang-Chieh Chou, Tsung-Han Lin, Jeff Schneider, David Bradley, and
Nemanja Djuric. Deep kinematic models for kinematically feasible vehicle trajectory predictions.

[23] Nicholas Rhinehart, Rowan McAllister, Kris Kitani, and Sergey Levine. Precog: Prediction conditioned on
goals in visual multi-agent settings. arXiv preprint arXiv:1905.01296, 2019.

[24] Karttikeya Mangalam, Harshayu Girase, Shreyas Agarwal, Kuan-Hui Lee, Ehsan Adeli, Jitendra Malik,
and Adrien Gaidon. It is not the journey but the destination: Endpoint conditioned trajectory prediction.
arXiv preprint arXiv:2004.02025, 2020.

[25] Lingyao Zhang, Po-Hsun Su, Jerrick Hoang, Galen Clark Haynes, and Micol Marchetti-Bowick. Map-
adaptive goal-based trajectory prediction. arXiv preprint arXiv:2009.04450, 2020.

[26] Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir Anguelov. MultiPath: Multiple probabilistic
anchor trajectory hypotheses for behavior prediction. In Conference on Robot Learning, pages 86–99,
2020.

[27] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

[28] SY Chen. Kalman filter for robot vision: a survey. IEEE Transactions on Industrial Electronics,
59(11):4409–4420, 2011.

[29] Thomas M Howard, Colin J Green, and Alonzo Kelly. Receding horizon model-predictive control for
mobile robot navigation of intricate paths. In Field and Service Robotics, pages 69–78. Springer, 2010.

[30] Jason Kong, Mark Pfeiffer, Georg Schildbach, and Francesco Borrelli. Kinematic and dynamic vehicle
models for autonomous driving control design. In 2015 IEEE Intelligent Vehicles Symposium (IV), pages
1094–1099. IEEE, 2015.

[31] Somil Bansal, Varun Tolani, Saurabh Gupta, Jitendra Malik, and Claire Tomlin. Combining optimal
control and learning for visual navigation in novel environments. In Conference on Robot Learning, pages
420–429. PMLR, 2020.

[32] Tung Phan-Minh, Elena Corina Grigore, Freddy A Boulton, Oscar Beijbom, and Eric M Wolff. CoverNet:
Multimodal behavior prediction using trajectory sets. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14074–14083, 2020.

[33] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

[34] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan,
Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving.
arXiv preprint arXiv:1903.11027, 2019.

11



Figure 7: Illustration of the decomposition of displacement error (DE) into its along-track error (ATE) and
cross-track error (CTE) components at a given timestep.

6 Appendix

6.1 Error Metrics

6.1.1 Average Displacement Error

We report the commonly used average displacement error (which we call avg DE, but is frequently
abbreviated ADE) as a metric to quantify errors between predicted and ground-truth trajectories.
This quantity is defined as the average `2 distance between the predicted and ground truth future
trajectories across all timesteps for all actors.

6.1.2 Average Along Track Error and Cross Track Error

To further analyze prediction errors, we decompose errors into their along-track and cross-track
components. These errors are calculated in the path-relative coordinate frame of the ground truth
trajectory. We follow the methodology in [25] – given the ground truth trajectory, τxy , we re-sample
τxy at a fixed spatial resolution of δτ = 0.1m, giving us the ground-truth path, ρ∗xy . We then project
the ground truth trajectory, τxy, and predicted trajectory, τ̂xy, onto the ground truth path ρ∗xy. The
projection decomposes the error into the along-track and cross track components. Given the along-
track and cross-track representations of the ground truth trajectory, τac, and predicted trajectory, τ̂ac,
we calculate along-track error (ATE) and cross-track error (CTE) for a given timestep, t, as follows:

ATE =
∣∣τ̂ ta − τ ta∣∣ CTE =

∣∣τ̂ tc ∣∣ (3)

We report the average along-track error (avg ATE) and average cross-track error (avg CTE) by
averaging over all timesteps across all actors.

12


	Introduction
	Related Work
	Method
	Background
	Path Generation
	Graph Networks Encoder
	Pure Pursuit Algorithm

	PTNet
	Multi-Modal Acceleration Profile Generation
	Loss Function


	Experiments
	Datasets
	Baselines
	Feasibility Metrics
	Results

	Conclusion
	Appendix
	Error Metrics
	Average Displacement Error
	Average Along Track Error and Cross Track Error



